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Correlated observation errors in data assimilation
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SUMMARY

Data assimilation provides techniques for combining observations and prior model forecasts to create initial
conditions for numerical weather prediction (NWP). The relative weighting assigned to each observation
in the analysis is determined by its associated error. Remote sensing data usually has correlated errors,
but the correlations are typically ignored in NWP. Here, we describe three approaches to the treatment
of observation error correlations. For an idealized data set, the information content under each simplified
assumption is compared with that under correct correlation specification. Treating the errors as uncorrelated
results in a significant loss of information. However, retention of an approximated correlation gives clear
benefits. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In numerical weather prediction, an accurate, high-resolution representation of the current state
of the atmosphere is needed as an initial condition for the propagation of a weather forecast.
Data assimilation combines observations of atmospheric variables with a priori knowledge of the
atmosphere to obtain a consistent representation. The weighted importance of each is determined
by the size of their associated errors; hence, it is crucial to the accuracy of the analysis that these
errors be specified correctly.

Satellite instruments are regularly calibrated, so that instrument errors are usually uncorrelated.
However, observation error correlations will arise from observation pre-processing and errors in the
forward model, including representativity (where phenomena observed by a sensitive instrument
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cannot be resolved by the model). The inclusion of such correlations results in a lower weighting
of the observations in the analysis, when compared with assimilating the same observations with
the same error variances and no correlations. The correlations increase the accuracy of gradients
of the observed field represented in the analysis, but make a smaller impact on the accuracy of the
observed field itself [1]. They also act in conjunction with the prior error covariance to specify
how observation information should be smoothed.

Unfortunately, such errors are not easily measured, and as the number of observations is of order
106 [2], the storage and subsequent computation using observation error correlations is infeasible.
Hence operationally, observations are usually assumed uncorrelated. In most cases, to compensate
for the lack of correlation, the observation error variances are inflated so that the observations have
the correct lower weighting in the analysis. However, variance enlargement is constrained by the
need for a physically accurate error estimate [3].

The assumption of zero correlations is often used in conjunction with data thinning methods such
as superobbing [4]. This reduces the density of data by averaging the properties of observations
in a region, and assigning this average as a single observation value. Under such assumptions,
increasing observation density beyond some threshold value has been shown to yield very little or
no improvement in the analysis accuracy [5]. Although discarding available information may be
appropriate when the spatial resolution of the observations is denser than the model grid, recent
technological advances have challenged the practicality of such methods. For example, as high-
resolution models are used in forecasting convective storms, there is a requirement to retain all
the available data to provide detail on the appropriate scales. Such shortcomings suggest that an
alternative approach to dealing with observation error correlations is needed.

Approximating observation error correlation is a relatively new direction of research but progress
has been made. Healy andWhite [6] have used circulant matrices to approximate symmetric Toeplitz
observation error covariance matrices. Results indicated that assuming uncorrelated observation
errors gave misleading estimates of information content. Fisher [7] proposes giving the observation
error covariance matrix a block-diagonal structure, with (uncorrelated) blocks corresponding to
different instruments or channels; individual block matrices are approximated by a truncated
eigendecomposition. On a simple domain, spurious long-range correlations have been observed.

In this paper, we expand on the work of the above and quantify the loss in information content
when ignoring error correlations, using simplified diagonal matrix structures, and using Fisher’s
proposed structures. We further extend Fisher’s work and investigate long-range correlations on
larger domains. The question of whether information loss is significant enough to warrant a change
in operational treatment is addressed. In Section 2 we give a brief overview of data assimilation and
information theory for this problem, and the structure of the experiment. Results and subsequent
conclusions are given in Sections 3 and 4, respectively.

2. METHODS AND DATA

2.1. Data assimilation

The main aim of variational data assimilation methods is to minimize a cost function that measures
the distance of the solution to the background and the observations, weighted by the inverse of
their respective error covariances

J (x)=(x−xb)TB−1(x−xb)+(y−h(x))TR−1(y−h(x)) (1)
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where x is the model state vector, xb is the background state, and h is the observation operator
(known as the forward model). For simplicity, in our analysis we use a linear approximation
to the forward model, Hx≈h(x). The vector y is the observation vector, whose relationship to
the model state vector, under the assumption of linearity, is given by y=Hx+eo, where eo is
the measurement error. Matrices B and R are the background and observation error covariance
matrices, respectively. B(i, j) describes the error covariance between components i and j of xb,
and R(i, j) describes the error covariance between components i and j of y.

Equation (1) can be solved to determine the value, xa, of the model state x that minimizes the
cost function J :

xa=xb+K(y−Hxb), K=BHT(HBHT+R)−1 (2)

Known as the analysis, xa is used for the initialization of the model variables in a forecast.

2.2. Information theory

In ignoring observation error correlations, we overlook a portion of the available data, and so
information that could be utilized is lost. In this context, the amount of information provided
by a set of observations is a measure of how much they reduce uncertainty in our analysis. To
evaluate numerically the information lost when using simplified observation error correlations, we
use Shannon Information Content (SIC) and the number of degrees of freedom of signal (dofS) [8].

2.2.1. Shannon Information Content. The SIC is a measure of the reduction of entropy [8]. Entropy
physically corresponds to the volume of state space occupied by the probability density function
(pdf) describing the knowledge of the state. Assuming all pdfs are Gaussian then

SIC= 1
2 ln |S−1

a B| (3)

where Sa is the analysis error covariance matrix given by (i) S(1)
a =(HTR−1

t H+B−1)−1 if the
correct covariance matrix Rt is used; (ii) S(2)

a =S(1)
a +K(Rt−Rf)KT if an approximation, Rf, to

Rt is used. An alternative philosophy in which S(1)
a is used in all cases is discussed in [9]. The

larger the SIC, the greater the reduction in uncertainty in our analysis.

2.2.2. Degrees of freedom of signal. The number of dofS indicates the number of quantities
deemed measured by the observations; the closer the dofS is to the total number of dof, the more
information the observations have provided.

We have an initial covariance matrix B and performing an analysis to minimize the variance
in observed directions gives us a posterior matrix Sa. The size of the eigenvalues in each matrix
represents the size of the uncertainty in the direction of the associated eigenvector; by comparing
the eigenvalues of the two, we can determine the reduction in uncertainty.

We take a non-singular square matrix L, as in [10], such that LBLT=I and LSaLT= Ŝa. This
transformation is not unique as we can replace L by XTL where X is an orthogonal matrix. Now
if we take X to be the matrix of the eigenvectors of Ŝa, then we simultaneously reduce B to the
identity matrix and Ŝa to a diagonal matrix of its eigenvalues, K;

XTLBLTX=XTX=I, XTLSaLTX=XTŜaX=K (4)
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After this transformation, the diagonal elements (eigenvalues) of the transformed matrix LBLT are
found to be unity and each corresponds to an individual dof. The eigenvalues of Ŝa may therefore
be interpreted as the relative reduction of variance in each of the independent directions. Hence,
if N is the total number of dof, then dofS is given by

dofS=N− trace(K)=N− trace(Ŝa)=N− trace(B−1Sa) (5)

Equations (3) and (5) describe the SIC and dofS in terms of the scaled analysis error variances;
therefore, information inferred from one measure can be directly related to the other.

2.3. Idealized data set

To evaluate information content quantitatively under different treatments of error correlations, we
investigate a scalar quantity on an idealized data set. Consider observations on a regular flat n×n
grid, with a 200 km spacing between observation points. Assume that every observation is taken
directly, H=I, and the background errors are uniform and described by the correlation function
B(i, j)=exp(−r2i j/2L

2), where ri j is the Euclidean distance between points i and j and L=190
is the length scale.

The test error covariance matrixRt is calculated using empirically derived error variances [2], and
isotropic correlations described by C(i, j)=(1+ri j/L)exp(−ri j/L). This produces a correlation
matrix C, with components C(i, j), which is used to describe Rt: Rt=D1/2CD1/2, where D is
the diagonal matrix of error variances. The variances are obtained from the analysis of pairs of
collocations between atmospheric motion vectors and radiosonde observations. It is this matrix
against which we measure information loss.

2.4. Observation error correlation matrix structures

Using the above experimental structure, we compare four different approaches to observation error
correlation. The analysis error covariance matrix is S(1)

a for A1 and S(2)
a for A2–A4.

A1. Use the test error covariance matrix Rt.
A2. Set the correlations to zero in Rt to obtain Rf.
A3. Set the correlations to zero in Rt and inflate the error variances to obtain Rf.
A4. Approximate Rt by a truncated eigendecomposition [7]

Rf=D1/2
(

�I+
M∑

m=1
(�m−�)vmvTm

)
D1/2=D1/2C̃D1/2 (6)

Here (�m,vm) is an (eigenvalue, eigenvector) pair of C, M is the number of leading
eigenpairs used in the approximation, and � is chosen such that trace(Rf)= trace(D), i.e.
so that there is no misapproximation of the total error variance.

3. RESULTS

Studying the results obtained using a diagonal approximation of Rt (A2 and A3), we conclude
that if we neglect observation error correlations, information is lost. As scaled representations of
the total analysis error variance, both the SIC and dofS are directly proportional to the number of
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Figure 1. (a) The SIC for different scales of variance enlargement and (b) the SIC for a correlated (Rt),
uncorrelated and eigenpair described R.
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Figure 2. Spatial structure of correlations for (a) Rt and (b) Rt described by its leading 10 eigenpairs.

observation points; hence, increasing our grid size provides access to more information. However,
as the number of observation points increases, the greater the difference in information between
Rt and the diagonal approximation used in A2. For a grid with 100 points, both the SIC (Figure 1)
and dofS (not shown) decrease by 75% between Rt and the diagonal approximation. Further results
for dofS can be found in [9].

A depletion in information also occurs when a rescaled diagonal approximation, as in A3, is
made; the scale of variance enlargement determines how detrimental the diagonal assumption is.
It is observed that for a diagonal approximation with a two or four times variance enlargement,
more information is retained than under the standard diagonal approximation, but less for an eight
times variance enlargement (Figure 1(a)). This supports Collard’s conclusions that we are limited
to a variance enlargement of between 2 and 4 times [3].

In A4 we acknowledge error correlations by forming a truncated eigendecomposition of Rt.
Results show that the more eigenpairs used in the decomposition, the smaller the difference in
information between Rt and the eigenpair approximation. The eigenpair approximation retains a
higher percentage of the information available than the diagonal approximations if more than a
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quarter of the eigenpairs are used. Describing Rt by an eighth of its eigenpairs and by a diagonal
approximation with a four times variance enlargement produce similar values of SIC (Figure 1).
When Rt is described by half of its eigenpairs, SIC only decreases by 11% compared with 60%
under A3 with a two times variance enlargement (Figure 1(b)). In describing Rt by its eigenpairs,
using too few will lead to spurious error correlations (Figure 2), as suggested by Fisher [7]. Under
this set-up the correlations are not large enough to discount the approach, but care must be taken
for larger problems.

4. CONCLUSIONS

We have evaluated the loss of information under three different treatments of correlated observation
errors. Approximating Rt with a diagonal matrix of the observation error variances, as in A2,
is overly detrimental to the information content, but a thoughtfully chosen rescaled diagonal
approximation can retain more of the information. An approach in which Rt is approximated by
a truncated eigendecomposition retains much of the information available if a sufficient number
of eigenpairs are used. But, addressing Fisher’s concerns [7], we find that spurious long-range
correlations are present even for larger observation sets.

Although creating a truncated decomposition of Rt is more costly than the traditional operational
approach, it includes some of the correlation structure of Rt and is still relatively easy to invert.
If the computational cost involved in this is not too extensive, then it may be possible to include
correlations operationally, leading to a more accurate forecast.

Calculations of information content are additionally dependent on both B and the idealized
observation operator H. In future work, different approaches to incorporating correlation structures
in the observation error covariance matrixRwill be conducted under a more realistic specification of
the two. The operational feasibility of including correlated observation errors in the data assimilation
algorithm must also be addressed.

ACKNOWLEDGEMENTS

The authors would like to thank John Eyre for his involvement and suggestions. This work is partly
funded by the NERC and the Met Office.

REFERENCES

1. Seaman R. Absolute and differential accuracy of analyses achievable with specified observation network
characteristics. Monthly Weather Review 1977; 105:1211–1222.

2. Bormann N, Saarinen S, Kelly G, Thepaut J-N. The spatial structure of observation errors in atmospheric motion
vectors from geostationary satellite data. Monthly Weather Review 2003; 131:706–718.

3. Collard A. On the choice of observation errors for the assimilation of AIRS brightness temperatures: a theoretical
study. ECMWF Report, AC/90, 2004.

4. Berger H, Forsythe M. Satellite Wind Superobbing. Forecasting Research Technical Report, vol. 451. Met Office,
2004.

5. Liu Z-Q, Rabier F. The interaction between model resolution, observation resolution and observation density in
data assimilation. Quarterly Journal of the Royal Astronomical Society 2002; 128:1367–1386.

6. Healy S, White A. Use of discrete Fourier transforms in the 1D-Var retrieval problem. Quarterly Journal of the
Royal Astronomical Society 2005; 131:63–72.

7. Fisher M. Accounting for correlated observation error in the ECMWF analysis. ECMWF Technical Memoranda,
MF/05106, 2005.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1521–1527
DOI: 10.1002/fld



CORRELATED OBSERVATION ERRORS IN DATA ASSIMILATION 1527

8. Rodgers C. Inverse Methods of Atmospheric Sounding, Theory and Practice. Atmospheric, Oceanic and Planetary
Physics, vol. 2. World Scientific: Singapore, 2000.

9. Stewart L, Dance S, Nichols N. Correlated observation errors in data assimilation. Numerical Analysis Report 3/05,
University of Reading, 2005. Available at: http://www.maths.rdg.ac.uk/research/publications/Na reports.asp.

10. Fisher M. Estimation of entropy reduction and degrees of freedom for signal for large variational analysis systems.
ECMWF Technical Memoranda, 397, 2003.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1521–1527
DOI: 10.1002/fld


